European Institute for Energy Research


Enrique Kremers received his electrical and information technology engineering diploma from the Karlsruhe Institute for Technology, Germany, in 2008. Since then he has been working as research and development engineer at the European Institute for Energy Research (EIFER, EDF & KIT) in Karlsruhe. In 2012, he received his PhD from Universidad del PaĆ­s Vasco, Spain, on the topic of modeling and simulation of energy systems through a complex systems approach. His main research focus is on modeling of distributed energy systems, by developing integrative and bottom-up simulation approaches, considering multiple spatial and temporal scales. Therefore methods from complexity science such as agent-based models and multi method modeling and model coupling are used. He has contributed to several EDF smart grid and smart city projects and is currently in charge of the Intelligent Energy System team in EIFER. Since 2014 he is lecturer at the Karlshochschule International University for the course Industry Energy Management.

Email not available


Agent based modelling of local energy networks as instances of complex infrastructure systems
Volume: 17, Issue 2
Attempts to model the present and future power networks face a huge challenge because it is a complex system, integrated by generation, distribution, storage and consumption subsystems, and using various control and automation computing systems. Moreover,in order to address the crucial issues of energy efficiency, additional processes like energy conversion and storage, and further energy carriers, such as gas, heat, etc., besides the electrical one, must be considered. In order to simulate those networks, a fully integrated agent-based model, provided with enhanced nodes or conversion points, able to deal with multidimensional flows, is presented in this article. Moreover a way to try to extend it to cover infrastructure networks is outlined.

Criticality in complex socio-technical systems:
Volume: 17, Issue 2
Critical regimes are present in all socio-technical systems. Usually, man-made systems are designed to avoid these regimes completely, and stay in a stable steady state to avoid uncertainty. However, complexity theory postulates that the edge of chaos, between order and disorder, provides highly interesting phenomena, such as emergence, which are important for the evolution of the system. In this paper we explore the edge of chaos through a concrete example in electrical energy systems. The exploration is done through simulation, which provides a valuable mean to perform massive experiments on large scale systems. The complexity residing at the edge is discussed, and external, system relevant and internal factors which are likely to shift this edge or drive the systems trajectory towards or away from it are introduced.

Model-based analysis of urban energy systems (on the basis of a city’s energy Master Plan)
Volume: 17, Issue 2
As half of the world’s population live in cities today, the topic of urbanization and urban energy systems shift continuously into society’s focus. It has become a common challenge for local governments to provide a so called “Master Plan”, outlining a long term vision for the city’s energy infrastructure, to which all planners and investors have to adhere. Being a top-down approach, these Master plans are first of all politically motivated documents, which focus on achieving given targets, such as CO2-emission reductions or higher shares of electric mobility. Originating from these targets, a set of milestones and measures is derived, e.g., the implementation of certain green technologies or refurbishments of buildings. The goal of this paper is to elaborate a model, which allows analysis of a Master Plan from a bottom-up perspective and thereby quantitatively assesses the plan with regards to its feasibility, while identifying possible bottlenecks in its implementation. The results can then serve the city planners to adapt their planning in order to avoid unforeseen problems, when putting the plan’s measures into practice. The approach pursued in this research is a combination of system dynamics and an agent-based simulation model of the city’s energy system, providing both a high spatial and temporal granularity. The model is developed with the multi-method modelling tool Anylogic and with Geographic Information System (GIS). The city itself is represented with its existing building and power infrastructure, which is then subject to the planned measures and developments. The core of the model implements on the one hand different energy generation technologies, both fossil fuels and renewables, reaching from big power plants to small local PV-installations on a private household’s roof. On the other hand, the heat and electricity consumers are represented through the buildings. The aim of the model is, at first, to provide a support system to analyze the short and long term effects of the Master Plan. Since its measures are usually not planned in detail concerning exact location or timing of the realization, the simulation results can provide references on these specific details. Secondly, the findings are used to identify the impact of single planned measures and their combinations which answers the questions of how, when and where local electricity and heat producers and the energy efficiency measures influence one another and if they have synergetic or competitive effects. Finally, a set of recommendations is derived from the analyses, which can help the city planners to transfer the strategic measures of the Master Plan into operative business.